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Graphical Abstract 22 

 23 

Highlights 24 

• A Python code for fitting soil water retention models to experimental data is provided 25 

• PySWR can fit both van Genuchten and Brooks and Corey water retention models 26 

• PySWR supports two constrained and one unconstrained non-linear fitting methods 27 

• A graphical approach has been developed to provide good initial guesses and parameter 28 

bounds 29 

• Trust region reflective method is the best approach for fitting soil water retention models 30 
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1. Introduction 35 

A soil water retention (SWR) function is an empirical model that describes the relationship 36 

between volumetric water content and soil matric pressure head. This empirical relationship is an 37 

important function used in computer simulation tools that are employed for solving practical 38 

problems in hydrology and geotechnical engineering fields (Clement et al., 1994; Clement et al., 39 

1996; Tuller et al., 2004; Malaya and Sreedeep, 2012). SWR function characterizes the ability of 40 

the soil to store and release water, and is also used for estimating several unsaturated soil 41 

properties that are used in hydroclimatic and hydrologic models (Mohanty and Zhu, 2007; Shin 42 

et al., 2012). Therefore, both laboratory and field approaches for developing SWR functions 43 

have received widespread attention in recent years (Schindler et al., 2012; Masaoka and Kosugi, 44 

2018; Roy et al., 2018; Shokrana and Ghane, 2020).  45 

In the published literature, several analytical models have been suggested for modeling SWR 46 

functions and this includes the Brooks and Corey (BC) model (Brooks and Corey, 1964), 47 

Fredlund-Xing model (Fredlund and Xing, 1994), Gardner model (Gardner, 1958), Campbell 48 

model (Campbell, 1974), and van Genuchten (VG) model (Van Genuchten, 1980), to name a 49 

few. Among these models, VG and BC models are the most widely used functions. The 50 

parameters in these models are typically identified by fitting these model functions to measured 51 

soil moisture data using a nonlinear curve fitting method. Both field and laboratory data have 52 

been used in such fitting exercises.  For field problems, researchers have employed various types 53 

of inverse modeling approaches that utilize unsaturated flow codes, such as HYDRUS, to fit 54 

field-observed soil moisture data (Simunek and Van Genuchten, 1999; Wang et al., 2016). Lai 55 

and Ren (2016) combined HYDRUS-1D and PEST (a general-purpose parameter estimation 56 

software) (Doherty et al., 2010) to determine the effective soil hydraulic parameters at a field 57 
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site. PEST employs a nonlinear parameter estimation algorithm known as the Gauss-Marquardt-58 

Levenberg method. The results of this study indicated that there are no unique set of average soil 59 

properties for fitting water content values measured at a heterogeneous field site. Ket et al. 60 

(2018) used a capacitance probe and a dielectric water potential sensor to measure soil water 61 

content and water potential, respectively, at a field site. They used HYDRUS-1D to fit the in situ 62 

data to indirectly estimate the values of VG parameters for different types of soils. Nascimento et 63 

al. (2018) used multiple instruments to measure the values of matric potential and soil moisture 64 

levels in a field experiment and then used HYDRUS-1D to estimate the VG model parameters. 65 

They concluded that HYDRUS-1D was able to estimate the VG model parameters well, and the 66 

values were found to be consistent with laboratory estimates. 67 

For fitting SWR data, researchers have employed different types of nonlinear least square (NLS) 68 

algorithms and heuristic search (HS) methods. Several numerical codes have been developed for 69 

solving this curve-fitting problem. One of the codes that use an NLS method is the RETC code, 70 

and it is used widely for fitting different types of SWR models (Van Genuchten and Yates, 71 

1991). Omuto and Gumbe (2009) used the Gauss-Newton algorithm available in R for fitting soil 72 

hydraulic properties used in infiltration and water retention models. Kumar et al. (2020) 73 

developed a software tool for fitting BC, VG, and modified-VG models using the Levenberg-74 

Marquardt NLS routine available within the SPSS statistical software package. One of the 75 

limitations of using NLS algorithms is that the final solution would depend on the quality of the 76 

initial guesses and therefore the estimated model parameters might not be the unique global 77 

optimal values. HS algorithms, which are independent of initial conditions, offer a more robust 78 

alternative for estimating optimal SWR parameters (Chen et al., 2016). However, HS methods 79 

have other numerical parameters that need to be adjusted a priori to obtain valid solutions. This 80 
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requirement could affect the final output, and also the process of adjusting these parameters can 81 

be computationally inefficient (Li et al., 2018; Luo et al., 2018). To avoid the issues related to 82 

algorithm-specific parameter adjustments, Zhang et al. (2018) employed a novel salp swarm 83 

algorithm (SSA) and used it to fit SWR functions. They also compared the performance of the 84 

SSA method with three other methods for fitting SWR functions. Their results indicated that 85 

SSA can yield better results. Recently, Guellouz et al. (2020) presented a study where they used 86 

the bound optimization by quadratic approximation (BOBYQA) approach to fit a finite 87 

difference model, which is based on the Richards' equation, to simulate a field experiment. They 88 

analyzed a drainage experiment conducted at field site in Southwestern Tunisia to estimate the 89 

VG parameters for the site. 90 

The tools reviewed above require complex computer programs for fitting SWR models, and also 91 

all these programs have some computational limitations. The objective of this study is to develop 92 

a simple, yet robust, computer tool for fitting VG and BC models to laboratory-measured soil 93 

moisture data. The Python module SciPy offers several computationally efficient solvers for 94 

fitting a nonlinear function to experimental data. In this study, we developed a Python code, 95 

namely PySWR, that employs SciPy for fitting SWR functions. We evaluated the code 96 

performance by fitting VG and BC functions to ten experimental datasets available in the 97 

literature.  98 

2. Methods 99 

2.1. van Genuchten SWR model 100 

The VG model  (Van Genuchten, 1980) is the most widely used SWR model since it is a smooth 101 

mathematical function without any discontinuities. This model has been used to describe a broad 102 
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range of disturbed and undisturbed soils. The model is an explicit analytical function that 103 

describes the volumetric water content θ as a function of capillary pressure as: 104 

� � ��
�� � �� � �� 	 
�|
|����� (1) 

where θ is the volumetric water content (cm3/cm3); θr is the residual water content (cm3/cm3), θs 105 

is the saturated water content (cm3/cm3); h is the capillary pressure head (cm) which is a negative 106 

number; α (cm -1) is a parameter that is related to the inverse of the air entry pressure; n is a 107 

parameter that is related to the shape of the pore size distribution (Wise, 1992; Wang et al., 108 

2017); and m is typically related to the value of n via the expression: m=1-1/n. The VG model is 109 

a two-parameter model and its shape is controlled by the values of α and n. The model parameter 110 

α is proportional to the inverse air entry value and its value can range from about 0.005 cm -1 for 111 

fine clays to about 1 cm -1 for coarse sand. The dimensionless value of n controls the shape of the 112 

drainage pattern and its value can be as high as 10 for uniform soils (such as well-graded sand) 113 

that will have sharp drainage pattern, and it can be as low as 1.1 for heterogeneous soils (such as 114 

silty clay) that will have diffused drainage pattern (Wise et al., 1994; Cornelis et al., 2005).  115 

2.2. Brooks and Corey SWR model 116 

Another popular empirical function used for modeling SWR data is the BC model (Brooks and 117 

Corey, 1964). This model relates soil moisture value with capillary pressure using the following 118 

equations:  119 

� � ��� 	 
�� � ���|�
|��										

 � ��/��																				
��																																													
	
 � ��/��																			  (2) 

Where ꞵ (cm-1) is the inverse of air entry value (or bubbling pressure) hb (cm), λ is a pore size 120 

distribution index and other terms are defined above. The BC model is a two-parameter model. 121 

Unlike the VG model, the BC model is not a smooth function since it has a discontinuity close to 122 
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the air entry value, a capillary pressure below which the soil is assumed to be fully saturated. 123 

Note, the BC model parameter ꞵ is similar to the VG parameter α. Typically, the value of 124 

bubbling pressure hb (cm) for clay soils is high and can range from about 100 to 200 cm; for 125 

sand, it is relatively small and can range from 1 to 10 cm. The pore size distribution index λ is 126 

related to the VG parameter n. Lenhard et al. (1989) provided the following analytical expression 127 

that approximately relates λ to the value of n: 128 

� � �
� ��
� � �. ��

�� (3) 

where m=1-1/n. Therefore, similar to n, the parameter λ is also related to the shape of the pore-129 

size distribution. If the pores are relatively uniform the soil will have a sharp drainage pattern 130 

(since all the pores will drain at a similar capillary pressure). On the other hand, if the pore size 131 

distribution is wide then the soil will have a smooth drainage pattern. The typical value of λ can 132 

range from 5 for uniform sand to about 0.1 for highly heterogeneous silty-sandy clay soils 133 

(Fuentes et al., 1992; Stankovich and Lockington, 1995).  134 

2.3. Fitting SWR functions to experimental data using non-linear optimization methods 135 

The problem of fitting a SWR model to an experimental dataset can be formulated as a least-136 

squares nonlinear optimization problem, where the model parameters are obtained using a curve-137 

fitting algorithm. Nonlinear curve fitting is a process of minimizing the error between data and 138 

model predictions by varying the model parameters over a range of possible values. Here we will 139 

employ the following three curved fitting algorithms that are available in the Python SciPy 140 

module: Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963), Trust 141 

Region Reflective (TR) algorithm (Fletcher, 1980; Sorensen, 1982), and Dogleg algorithm with a 142 

rectangular trust region (DB) (Voglis and Lagaris, 2004). In the past, others have used the LM 143 
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algorithm, which is an unconstrained optimization method, for fitting SWR models (Van 144 

Genuchten and Yates, 1991; Zhang et al., 2018). However, the LM method can be inefficient for 145 

highly nonlinear problems. For these cases, TR or DB could be a better alternative since they 146 

allow the model parameter values to be constrained using a set of user-specified bounds. For 147 

example, Le et al. (2017) used a new numerical method to estimate several parameters of a non-148 

linear elastic visco-plastic (EVP) creep model for soft soils. Their numerical approach employed 149 

the TR algorithm to fit EVP model parameters. This study also explored some of the limitations 150 

of the TR algorithm. As summarized in this study, the TR method approximates the objective 151 

function f(x) with a quadratic function q(s) that reflects the behavior of function f(x) in a 152 

neighborhood N, which is called the trust-region around a point xk. The model is “trusted” within 153 

a limited region around this current point defined by the trust-region sub-problem. This approach 154 

can limit the length of the step as one move from xk to xk+1. Therefore, the method can be 155 

inefficient for very large constrained optimization problems. However, the fitting problem that 156 

considered in this study only had two unknown parameters and we did not encounter any 157 

computational inefficiencies in all our simulations.  158 

2.4. Experimental data for testing the performance of various curve fitting methods 159 

Ten soil moisture datasets are analyzed in this study. Four of these datasets are taken from Van 160 

Genuchten and Yates (1991) study, where these data were used to test the performance of the 161 

RETC code for fitting both VG and BC functions. These four RETC soils are labeled as Weld 162 

silty clay loam (Jensen and Hanks, 1967), Touchet silt loam (King, 1965),  G.E. No. 2 sand 163 

(King, 1965), and Sarpy loam (Hanks and Bowers, 1962) (See Table S1 in Supplementary 164 

Material for more details about this sample dataset). 165 
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Six other datasets were taken from the UNsaturated SOil hydraulic DAtabase (UNSODA). The 166 

UNSODA is a public domain resource and it provides a wide range of data for several soils. In 167 

this study, we used the UNSODA V2.0 available at this website: https://data.nal.usda.gov/. These 168 

soil data are presented in a format that can be directly accessed through Microsoft Access-97 169 

(Schaap et al., 2015). The six datasets selected to study include sandy, silty, loamy, and clayey 170 

type soils collected at different field sites (See Table S2 in Supplementary Material for more 171 

details about this sample dataset).   172 

3.0. Results and Discussion 173 

The basic source code for the PySWR Python script is available at Github 174 

(https://github.com/tpclement/PySWR; see Appendix A for more details). PySWR is a relatively 175 

short code that offers three powerful options (LM, TR, and DB algorithms) for fitting both VG 176 

and BC models to soil moisture data. The code also supports data visualization and error analysis 177 

tools. The experiment data are input to the code in a two-column format (pressure head vs. soil 178 

moisture) using a standard EXCEL CSV format (See Table S3 in Supplementary Material for a 179 

sample dataset). 180 

3.1 Van Genucthen model results 181 

To understand the relative performance of LM, TR, and DB algorithms for fitting the VG model, 182 

we first fitted the model to one of the RETC soils (Touchet silt loam (King, 1965)) using all 183 

three optimization methods. A standard set of initial guess values for the model parameters, 184 

provided by Zhang et al. (2018), was used; these values are summarized in Table 1. The table 185 

also provides a generic set of lower and upper bounds given by Zhang et al. (2018); these values 186 



10 
 

were employed when running TR and DB methods. The table also provides a generic set of 187 

initial guesses as well as the lower and upper bounds for all BC model parameters.   188 

Table 1. The initial guesses and lower and upper bounds used 189 
                             for various model parameters. 190 
 191 

 192 

 193 

The values of VG model parameters estimated by PySWR, literature-derived RETC estimates 194 

(Van Genuchten and Yates, 1991), and the computational time taken by all three fitting 195 

algorithms are summarized in Table 2. Figure 1 compares experimental data with the fitted 196 

model results (note absolute values of soil water potential are plotted in all the figures). The 197 

results show that it is almost impossible to distinguish the difference between the curves fitted 198 

using the three methods. The data presented in Table 2 also show that all three methods 199 

estimated identical parameter values. The code was run on a standard windows-based computer 200 

with Intel(R) Core(TM) i5 processor and 8.00 GB memory and all three methods took a fraction 201 

of a second to converge.  202 

Table 2. The values of van Genuchten model parameters for Touchet silt loam (King, 1965) 203 
estimated using the three fitting methods.  204 

 205 

 206 

Parameters �r �s 
VG model BC model 

n � (cm-1) � � (cm-1) 

Initial guess  0.05 0.4 1 1 0.1 1 
Lower bound  0 0 1 0 0 0 
Upper bound 1 1 100 100 100 100 

Method �r �s n � (cm-1) Comp time (s) 

LM 0.092±(0.004) 0.527±(0.001) 3.5±(0.07) 0.0270±(0.0001) 0.092 
TR 0.092±(0.004) 0.527±(0.001) 3.5±(0.07) 0.0270±(0.0001) 0.102 
DB 0.092±(0.004) 0.527±(0.001) 3.5±(0.07) 0.0270±(0.0001) 0.130 

RETC Code 0.102 0.526 3.5 0.027 --- 
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 207 

Figure 1. van Genuchten soil water retention function for Touchet silt loam (King, 1965) fitted 208 
using the three methods. 209 

 210 

The Python tool can also compute the uncertainty (or error) in the estimated values of model 211 

parameters (which are the square root of the diagonal entries of the covariance matrix output by 212 

the fitting routine). The standard error values for various model parameters estimated by the 213 

three fitting methods are summarized in Table 2. Interestingly, the uncertainly estimates 214 

computed using all three optimization algorithms are identical.   215 

Since the parameter values estimated by all three fitting methods were identical, for other RETC 216 

soils we only report the values estimated using the TR method. We selected the TR method since 217 

it is computationally a bit more efficient than the DB method (see Table 2), and it also allowed 218 

the user to constrain the parameter space based on our prior knowledge of the parameter values. 219 

As illustrated in our later examples, constraining the parameters can have several advantages. 220 

Figure 2 presents the model fits for all four RETC soils. In Table 3 the parameter values 221 

estimated by PySWR are compared against the values reported in the RETC manual. The figures 222 

show that the TR method was able to fit the VG model well for all four RETC datasets. Also, the 223 

data shown in the table indicate that the fitted parameter values are close to the values estimated 224 
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using the RETC code.  The sum of square error (SSE) value reported in the table was calculated 225 

as the metric to evaluate the difference between the measured and the estimated water content 226 

values. The SSE is defined as follows: 227 

  ! � 	"#�$%&� � �$'�()*
+

$,�
	 (4) 

Where θi
obs

 is the observed data, while θi
est is the estimated value and N is the total number of 228 

measurements in each soil sample. The SSE data show that the TR method provided better fits 229 

for most of the soils.   230 

  231 

  232 

Figure 2. van Genuchten model fits for the four RETC soils fitted using the TR method: (a) 233 
Weld silty clay loam (Jensen and Hanks, 1967) (b) Touchet silt loam (King, 1965) (c) G.E.No.2 234 
sand (King, 1965) (d) Sarpy loam (Hanks and Bowers, 1962). 235 

 236 

 237 
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Table 3 The values of van Genuchten model parameters estimated using the TR method for the 238 
four RETC soils. 239 

Soil type Method �r �s n � (cm-1) SSE (10-3) 

Weld silty 
clay loam 

(Jensen and 
Hanks, 1967) 

TR 
RETC code 

0.159±(0.006) 
0.15 

0.49±(0.01) 
0.49 

5.4±(0.3) 
5.4 

0.0136±(0.0002) 
0.0136 

4.85 
4.87 

Touchet silt 
loam 

(King, 1965) 

TR 
RETC code 

0.092±(0.004) 
0.102  

0.527±(0.001) 
0.526 

3.50±(0.07) 
3.59  

0.0270±(0.0001) 
0.027 

0.10 
0.17 

G. E. No.2 
sand  

(King, 1965) 

TR 
RETC code  

0.069±(0.007) 
0.057  

0.365±(0.002) 
0.367  

5.4±(0.2) 
5.0  

0.0367±(0.0003) 
0.0364 

0.23 
0.34 

Sarpy loam 
(Hanks and 

Bowers, 
1962) 

TR 
RETC code 

0.031±(0.005) 
0.032 

0.400±(0.002) 
0.400 

1.59±(0.02) 
1.60 

0.027±(0.001) 
0.027 

0.98 
0.99 

 240 

3.2 Brooks and Corey model results  241 

Similar to the previous section, we used the generic initial guesses and the generic upper and 242 

lower bounds provided in Table 1 to fit the BC model to the Touchet silt loam data using all 243 

three fitting methods. The model parameter values estimated for Touchet silt loam are 244 

summarized in Table 4. The table also provides the optimal values of BC parameters estimated 245 

using the RETC code (Van Genuchten and Yates, 1991). These results show that the LM method 246 

failed to evaluate good estimates for λ, and even provided an unrealistic negative value for the 247 

residual water content. On the other hand, both TR and DB estimated more realistic BC model 248 

parameter values. We repeated the fitting exercise for several other soil datasets (details of these 249 

soils are discussed in later sections), and for many of these cases, the LM method either failed to 250 

converge or estimated unrealistic values. Furthermore, our test simulations indicated that 251 

providing better initial guess values and also constraining the parameter values within a narrow 252 

range (rather than the broad range provided in Table 1) yielded better results when using the TR 253 
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and DB methods. Therefore, in the following section, we propose a practical approach for 254 

estimating initial guess and upper-and-lower bounds values for various model parameters by 255 

graphically analyzing the experimental data.   256 

                    Table 4.  The values of Brooks and Corey model parameters for 257 
Touchet silt loam (King, 1965) estimated using the three fitting methods. 258 

 259 
Method �r �s λ � (cm-1) 

LM 
TR 
DB 

RETC code 

-0.67 
0 
0 

0.018 

0.51 
0.510±(0.007) 
0.510±(0.007) 

0.499 

0.26 
0.9±(0.2) 
0.9±(0.2) 

1.1 

0.05 
0.045±(1e-3) 
0.045±(1e-3) 

0.037 
 260 

Figure 3 summarizes the details of the proposed graphical approach for evaluating better initial 261 

guesses and parameter bounds. We present the data analysis steps for the Touchet silt loam 262 

(King, 1965) dataset to demonstrate this intuitive graphical approach. As a first step, we 263 

estimated the initial guess value for porosity by drawing a vertical line connecting a few data 264 

points which are close to maximum water content. As shown in Figure 3, this line (black line) 265 

intersected the x-axis at the moisture content value of about 0.52, which will be our initial guess 266 

for the value of saturated water content (or porosity). We then perturbed this porosity value by 267 

about 25% on either side to estimate the lower and upper bounds for porosity as 0.40 to 0.65, 268 

respectively.   269 

To estimate the initial guess value of the air entry pressure, we evaluated a transition point where 270 

the soil started to drain sharply (i.e., the water content started to decrease sharply from the 271 

maximum saturation level) and a horizontal line (blue-line) was drawn through this point and the 272 

line intersected the y-axis at the capillary pressure value of about 20 cm, which was assumed to 273 

be the guess value of the air entry pressure. To estimate the upper bound for the air entry 274 

pressure, we identified an inflection point that normally occurs somewhere between 25% to 50% 275 
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of the drainable porosity (this range is an estimate based on our experience of analyzing multiple 276 

SWR datasets including the ten datasets presented in this study). For the loam soil, the inflection 277 

point is located close to the water content value of 0.35 (as marked by the vertical red line 278 

without an arrow). We then drew a horizontal line (red line) going through the inflection point 279 

and estimated the upper bound for the air entry pressure as 40 cm for the loam soil (See Figure 280 

3). The lower bound for the air entry pressure was always assumed to be 1 cm (which is an 281 

extremely low value, typically observed for coarse sands).   282 

 283 

Figure 3.  Graphic approach for estimating the initial guess values, and lower and upper bounds 284 
for VG and BC model parameters. 285 

 286 

To estimate the value of the upper bound of the residual saturation, a vertical line (green line) 287 

was drawn that connected a few data points that have very low water content values. This line 288 

intersected the x-axis at the water content value of 0.12, and this value was assumed as the upper 289 

bound for residual saturation. Since the value of residual water content will always be tending 290 

towards zero, we assumed zero as the lower bound for all soils.  However, if a better value of 291 

residual saturation is available, the user can always use that value as the lower bound. The best 292 
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initial guess for residual saturation was then estimated as the midpoint between the upper and 293 

lower bound values; for the loam soil this value is estimated to be 0.06.    294 

The typical value of λ would range from 5 for uniform material (such as uniform sand), to a low 295 

value of about 0.1 for highly heterogeneous silty-clay materials. The initial value for λ was 296 

always assumed to be 1, which is close to the logarithmic midpoint of the range of possible λ 297 

values. We analyzed all four RETC soils using the proposed graphical approach and estimated 298 

initial guesses and upper and lower bounds, and the data are summarized in Table 5.  299 

Table 5. Initial guess values and lower and upper bounds for Brooks and Corey parameters 300 
estimated using the proposed graphical approach for the four RETC soils (the values are 301 
organized as θr, θs, λ, ꞵ (cm-1)) 302 
 303 

Soil type Initial guess Lower bound Upper bound 

Weld silty clay loam 
(Jensen and Hanks, 1967) 

0.07, 0.47, 1.0, 0.016 0, 0.35, 0.1, 1 0.14, 0.58, 5, 0.012 

Toucher silt loam 
(King 1965) 

0.06, 0.52, 1.0, 0.055 0, 0.39, 0.1, 1 0.12, 0.65, 5, 0.025 

G. E. No.2 sand 
(King, 1965) 

0.045, 0.37, 1.0, 0.083 0, 0.28, 0.1, 1 0.09, 0.46, 5, 0.04 

Sarpy loam 
(Hanks and Bowers, 1962) 

0.035, 0.40, 1.0, 0.1 0, 0.3, 0.1, 1 0.07, 0.5, 5, 0.0025 

 304 

We employed the values given in Table 5 to fit the BC model to all four RETC soil datasets and 305 

the results are shown in Figure 4.   306 

 307 

 308 

 309 
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 310 

 311 

Figure 4.   Brooks and Corey model fit for the four RETC soils fitted using the TR and DB 312 
methods: (a) Weld silty clay loam (Jensen and Hanks, 1967) (b) Touchet silt loam (King, 1965) 313 
(c) G.E.No.2 sand (King, 1965) (d) Sarpy loam (Hanks and Bowers, 1962). 314 

 315 

The results show that both TR and DB methods fitted the data well. In Table 6 we only provide 316 

the TR results and compare them with the values estimated by the RETC code. These data show 317 

that the model parameter estimated by PySWR are close to the RETC estimates. Also, the 318 

estimated values of SSE in Table 6 indicate that the TR method performed similar or better when 319 

compared to RETC code results, for all four datasets.   320 

 321 

 322 

 323 
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Table 6. The values of Brooks and Corey model parameters estimated by TR method for the four 324 
RETC soils.  325 

 326 

3.3 Comparison of the efficiency of different non-linear fitting approaches  327 

To understand the relative efficiency of the three fitting approaches, we artificially perturbed the 328 

Touchet silt loam (King, 1965) data (the perturbed dataset is given in Table S4, see 329 

Supplementary Material) by introducing some random noise to the data. We employed the 330 

graphical approach for reevaluating the initial guesses and parameter bounds for the noisy 331 

dataset and the results are summarized in Table S5 (see Supplementary Material). We then used 332 

all three methods to fit both VG and BC models to this noisy dataset. The estimated model 333 

parameter values are summarized in Table 7; note, in the table we only report the values 334 

estimated by TR because the LM method failed, and TR and DB methods generated similar 335 

results. Figure 5 shows the model profiles fitted using the TR and DB methods. The figure 336 

clearly shows that both TR and DB fits were almost identical. The most interesting result of this 337 

efficiency test was that the LM method not only failed to fit the BC model (which should be 338 

expected) but also failed to fit the VG model when the data was noisy.  339 

Soil type Method �r �s λ 
� 

 (cm-1) 

  !	 

���-� 

Weld silty clay loam 
(Jensen and Hanks, 

1967) 

TR 
 

RETC code 

0.112±(0.003) 

 

0.11 

0.470±(0.003) 

 

0.46 

1.83±(0.03) 

 

1.89 

0.01739±(6e-5) 

 

0.017 

0.21 

 

0.21 

Toucher silt loam 
(King 1965) 

TR 
 

RETC code 

0.00 

 

0.018 

0.510±(0.007) 

 

0.499 

0.9±(0.2) 

 

1.1 

0.045±(1e-3) 

 

0.037 

2.25 

 

3.67 

G. E. No.2 sand 
(King, 1965) 

TR 
 

RETC code 

0.00 

 

0.00 

0.358±(0.004) 

 

0.352 

1.5±(0.5) 

 

1.7 

0.049±(1e-3) 

 

0.046 

1.56 

 

3.54 

Sarpy loam 
(Hanks and Bowers, 

1962) 

TR 
 

RETC code 

0.00 

 

0.00 

0.380±(0.004) 

 

0.380 

0.38±(0.04) 

 

0.38 

0.044±(2e-3) 

 

0.044 

5.38 

 

5.39 
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Our simulation results also indicated that for most cases the TR method is a bit more 340 

computationally efficient than the DB approach (e.g., see Table 2). We completed additional 341 

sensitivity simulations by perturbing the initial guess values; the results indicated that for some 342 

soils the DB method can be relatively more sensitive to initial guess values when compared to 343 

the TR method. Overall, we found the TR method as the most robust approach for fitting both 344 

VG and BC models. Therefore, in the following validation section, we only present the results 345 

for the TR method.  346 

Table 7. The values of van Genuchten and Brooks and Corey model parameters  347 
              estimated for the noisy Touchet silt loam (King 1965) data (note, we only report TR  348 
              349 results since 

LM failed to 350 converge 

and DB 351 estimates 

were identical to TR). 352 

 353 

 354 

 355 

 356 

Figure 5. TR and DB fits for the noisy Touchet silt loam data (King, 1965): (a) van Genuchten 357 
function model results and (b) Brooks and Corey model results. 358 

 359 

3.4 Validation of the code performance using additional datasets 360 

Method �r �s n or λ α or � (cm-1) 

 VG-TR 0 0.51±(0.05) 3±(2) 0.025±(0.005) 
 BC-TR 0 0.50±(0.04) 0.9±(1) 0.045±(0.008) 
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To further test the performance of the PySWR code, we used the code to fit both VG and BC 361 

models to six different UNSODA datasets. We first analyzed these experimental data using the 362 

proposed graphical approach and evaluated the initial guesses and bounding values for all the 363 

model parameters. These values are summarized in Table S6 (see Supplementary Material).  364 

We used the TR method to fit the VG model to the six UNSODA soils and the fitted model 365 

profiles are compared with the experimental data in Figure 6. The figures show that the PySWR 366 

code was able to fit all UNSODA datasets well. The estimated model parameter values are 367 

compared against the SSA (Zhang et al., 2018) and RETC code results in Table S7 (see 368 

Supplementary Material). From the values of SSE, summarized in Table S7 it can be observed 369 

that the TR method was able to provide better fits with relatively low SSE values when 370 

compared to RETC fits.   371 

 372 

 373 

Figure 6. van Genuchten model fits for the six UNSODA soils fitted using the TR method: (a) 374 
Sample 1102 (Sandy Clay), (b) Sample 1330 (Silt), (c) Sample 1162 (Clay), (d) Sample 2400 375 
(Loam), (e) Sample 1361 (Silty Clay), (f) Sample 1173 (Clay Loam).  376 

 377 
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The TR method was then used to fit the BC model to all UNSODA soils.  The model profiles 378 

fitted by the PySWR code are compared with experimental data in Figure 7. The figure shows 379 

that the TR method was able to fit the BC model to all six datasets. Furthermore, the fitted model 380 

parameter values are summarized in Table S8 (see Supplementary Material). The values 381 

presented in the table (see S8) show that the code was able to estimate realistic model 382 

parameters.  383 

384 

 385 

Figure 7. Brooks and Corey model fit for six UNSODA soils fitted using the TR method: (a) 386 
Sample 1102 (Sandy Clay), (b) Sample 1330 (Silt), (c) Sample 1162 (Clay), (d) Sample 2400 387 
(Loam), (e) Sample 1361 (Silty Clay), and (f) Sample 1173 (Clay Loam).  388 

 389 

As discussed in the aforementioned sections, unlike the VG model, the BC model is not a smooth 390 

function and has a discontinuity close to the air-entry value. Comparisons of experimental data 391 

shown in Figure 6 and Figure 7 indicate that the initial drainage pattern was fairly smooth for all 392 

six UNSODA soils. As expected, the sharp transition region near the air entry value resulted in 393 

the BC function not fitting some of the data points located near high water content values. The 394 

VG model, which simulated a smoother drainage pattern provided better fits for all six 395 

UNSODA datasets. Our test simulations indicated that for most of our cases, the VG model 396 



22 
 

performed well even when generic initial guesses and generic upper and lower bounds were 397 

used. On the other hand, the BC model required better initial values and narrower bounds to 398 

obtain meaningful results. Overall, the VG model was a better function for describing the 399 

UNSODA data. 400 

4. Conclusions 401 

We present the details of a Python code, PySWR, for fitting VG and BC models to soil moisture 402 

data. PySWR provides options to use several non-linear least-squares fitting methods, including 403 

LM, TR, and DB methods, available in the Python SciPy module. The results show that all three 404 

methods were able to fit the VG model to the four RETC soil datasets. However, further analysis 405 

indicated that the LM method failed to fit the VG model when some random noise was 406 

introduced into the data. The LM method also failed to fit the BC model to all the experimental 407 

datasets considered in this study. The TR and DB methods were found to be much better 408 

alternatives since they allowed the user to constrain the bounds of various model parameters, 409 

thus limiting the search within a feasible range.  The efficiency of these methods can be 410 

improved by providing good initial guesses, and better upper and lower parameter bounds. The 411 

graphical method proposed in this study is an intuitive practical approach for evaluating good 412 

guesstimates and parameter bounds. The performance of the DB method was always comparable 413 

to the TR method; however, we recommend the use of the TR method since it was relatively less 414 

sensitive to variations in initial guess values, and it was also a bit more computationally efficient 415 

than the DB method. Our results show that PySWR is an excellent tool for analyzing SWR data. 416 

The PySWR code has tools for estimating parameter error, and it also supports various plotting 417 

routines for comparing model-fitted SWR curves with experimental data. Overall, PySWR is a 418 

useful tool for fitting both VG and BC models to experimental data. 419 
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